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Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) (also known as “new Coronavirus”) is the strain of 
coronavirus responsible for the COVID-19 pandemic affect-
ing worldwide 8,634,575 people and causing, up to June 2020, 
460,081 deaths (119,112 in USA, 187,231 in Europe and 4,645 
in China; https://www.ecdc.europa.eu/en/geographical-distribu-
tion-2019-ncov-cases). This virus shows RNA homology high-
er than 80% with previous Coronaviruses, responsible for the 
SARS outbreak in China of 2002 and for MERS that occurred 
in Middle East in 2012 [1]. Two receptors for SARS-CoV-2 
have been identified on human cells: the Angiotensin Converting 
Enzyme 2 (ACE2) [2], and the Dipeptidyl-Peptidase 4 (DPP4), 
also known as CD26 [3].  These receptors are constitutively ex-
pressed in kidney, liver, epithelial cells, exocrine glands, pan-
creas, lung and gut, so explaining some symptoms and signs 
typical of COVID-19, such as nausea, vomit, diarrhea, pneu-
monia and insulin-resistance [4]. CD26 is particularly expressed 
on pneumocytes, especially in subjects with a history of smok-

ing and chronic lung disease, so justifying the high number of 
COVID-19 pneumonia that frequently required ventilation and 
intubation [5].

Several different viral proteins have been identified to be 
fundamental for virus attack and replication: spike (S) and enve-
lope (E) proteins allow virus to attack host cells, membrane (M) 
protein is necessary for its interaction with RNA, hemagglutinin 
esterase (HE) is important for virus release and nucleocapsid (N) 
protein increases the stability of the new virions [6]. 

After passage through endoplasmic reticulum and Golgi ap-
paratus, viral RNA, N protein and E glycoproteins assemble to 
form the new virions that are subsequently released to spread 
infection [7]. Chloroquine and hydroxychloroquine modify the 
pH-dependent early phase of virus replication and reduce the 
production of TNF alpha and IL-6, resulting efficacious in the 
Coronavirus pandemic [8], although its cost-benefit ratio has 
been recently debated due to the increased risk of QTc prolon-
gation and possible onset of arrhythmias that these compounds 
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COVID-19 is the current severe systemic disease that follows the infection by the new Coronavirus, SARS-
CoV-2. It is characterized by a “cytokine” storm, innate immune system failure and by a hypercoagulation 
status that is responsible for ischemic damage of several organs. The infection starts with the attack of SARS-
CoV-2 to ACE2 and CD26 receptors on the human cells, with consequent block of autophagy and increased cell 
senescence, responsible for hyperinflammation and further overspread of new virions. In the present article we 
revised the role of the Bruton’s Tyrosine Kinase (BTK) in this scenario and how the BTK inhibitors (BTKIs), 
already available for therapy of lymphoproliferative diseases and autoimmune disorders, might represent a valid 
therapeutic option in COVID-19. 
Indeed, BTK is actively involved in inflammation; consequently, its inhibition might be advantageous in reducing 
the hyper-inflammation that characterizes COVID-19, as demonstrated in rheumatological disorders and graft-
versus-host disease. Moreover, BTK inhibition might restore autophagy and reduce senescence, so avoiding the 
overspread of viral infection and sustaining the host antiviral response. Finally, BTKIs might also reduce the 
thrombotic risk without a significant pro-hemorrhagic effect by blocking CLEC2. The ongoing clinical trials 
involving ibrutinib, acalabrutinib and zanubrutinib will help to support or to refute our hypotheses.
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might induce, especially in combination with antibiotics [9,10].
We previously reported that the interaction between the new 

Coronavirus and CD26 might be central since SARS-CoV-2 
uses this structure for blocking autophagy, a well-known host 
first line antiviral defense, and for further sustaining the inflam-
mation loop, that in COVID-19 rapidly becomes excessive and 
uncontrolled [11]. This hyper-inflammatory status might be also 
the consequence of increased formation of the “neutrophil ex-
tracellular traps” (NETs) that actively sustain inflammation and 
possibly even thrombotic events that have been frequently re-
ported in COVID-19 [12].

At the same time, the over-activation of the renin angioten-
sin axis, through the cross-linking of Coronavirus to ACE2 re-
ceptors, induces brain, kidney and skeletal muscle dysfunction 
and cellular senescence [13]. Indeed, SARS-CoV-2 uses its open 
reading frame (ORF) 9b protein to block the host antiviral action 
by the proteasome-dependent degradation of the mitochondrial 
Dynamin 1-like (DRP1) protein. This activity causes mitochon-
drial abnormalities and dysfunctions, such as hyper fusion, with 
the final acquisition of senescent phenotype [14]. Once cells 
have become senescent, they start to over-product pro-inflam-
matory cytokines, chemokines and growth factors that sustain 
COVID-19 onset. In addition, human cells, becoming senescent, 
spread new virions by producing high amounts of extracellular 
vesicles that can reach different and far sites where infection dis-
seminates [15]. Moreover, senescence seems to directly favor the 
viral particles anchorage on the host cell surface by inducing the 
expression of higher amounts of vimentin [16], an intermediate 
filament protein implicated in the dynamic organization of the 
cytoskeleton already described as a key element of virus entry 
into host cells in previous Coronavirus [17],  and HIV-1 infec-
tions [18]. 

Meanwhile, SARS-CoV-2 destabilizes the host antiviral 
proteins and up-regulates some deubiquitinases by dysregulating 
ubiquitination processes, allowing virus to express some proteins 
necessary for its replication [19]. 

Previous in vitro studies on SARS-CoV-2 showed that the 
synthesis of the viral RNA and related proteins were strongly re-
duced by proteasome inhibitors [20]. Consequently, these drugs 
have been proposed similarly against COVID-19. In particular, 
the most recently licensed proteasome inhibitor Carfilzomib, 
was indicated by two different groups the best candidate to inter-
act with SARS-CoV-2 glycoproteins [21,22]. 

In addition to hyperinflammation, dysregulation of host in-
nate immunity plays a fundamental role in the COVID-19 patho-
genesis. Indeed, virus-infected lung cells induce the recruitment 
of macrophages, monocytes and lymphocytes [23], while neu-
trophils, together with boosted pro-inflammatory cytokines, such 
as IL-6 and IL-17, promote the pro-thrombotic state [24]. 

In addition to the DPP4/CD26 axis, the new Coronavirus 
impairs host immune response by inducing over-expression of 
the inhibitory receptor NKG2A expressed on cytotoxic lympho-
cytes and NK cells, which, in turn, reduces the ability of lympho-
cytes to produce CD107a, IFN-γ, IL-2, granzyme B, and TNF 
alpha[25]. At the same time, viral components are recognized by 
toll-like-receptors (TLRs) that trigger the activation of inflam-
masome [26]. 

 All these factors converge in a “cytokine storm”, making 

impossible for the host to proceed to the efficient immune re-
sponse and to the control of virus-induced inflammation.

In this complex scenario, Bruton’s Tyrosine Kinase (BTK) 
could play a relevant role.

BTK as Crossroads between Inflammation and Host Im-
mune Response

BTK is a 659-amino acid prevalently cytoplasmic protein 
that belongs to the conserved family of “non-receptors” tyrosine 
kinases, known as “TEC (Tyrosine Kinase Expressed in hepato-
cellular Carcinoma) family”. BTK is encoded by a gene located 
on chromosome X, structurally including: 1) a Src homology 2 
(SH2) domain, which is involved in the interaction with phos-
phorylated tyrosines; 2) a SH3 domain, by which BTK interacts 
with proline-rich domains of different proteins; 3) a catalytic 
site, and 4) the N-terminal (PH) domain, necessary for interact-
ing with plasma membrane via phosphatidylinositol triphosphate 
(PIP3). This latest domain is essential for BTK translocation 
from the cytoplasm to the membranes and for starting its phos-
phorylating activity [27]. 

Once activated, BTK induces phosphorylation of the down-
stream PhosphoLipase C gamma 2 (PLC gamma 2) protein, 
activates calcium channels in endoplasmic reticulum, and re-
cruits the Tumor necrosis factor Receptor-Associated Factor 6 
(TRAF6), which in turn activates the IKK complex. This com-
plex induces the ubiquitination-mediated degradation of IkB, 
that allows NF-kB to translocate into the nucleus, resulting in the 
final increased B cell survival and inflammation [28,29].In addi-
tion, BTK is able also to trigger the Nuclear Factor of Activated 
T-cells (NFAT) pathway, notably over-activated in patients with 
inflammatory conditions, such as the Kawasaki’s disease[30].
BTK is involved in the inflammatory process as active part of 
the NLRP3 inflammasome, a multimeric protein complex that 
triggers the release of proinflammatory cytokines, such as IL-1 
beta and IL-18, in many inflammatory conditions, including Alz-
heimer’s disease, diabetes, and infections [31].  

It has been found that a variety of stimuli, including the 
danger-associated molecular patterns (DAMPs) and the patho-
gen-associated molecular patterns (PAMPs), can activate the in-
flammasome, either after the interaction of NF-kB with Toll-like 
receptor 4 (TLR4), by mitochondrial dysfunction, indirectly trig-
gered by calcium efflux, or lysosomal rupture. All these condi-
tions are controlled by BTK. Once activated, the inflammasome, 
including BTK, cleaves the pro-caspase-1 to give activated 
caspase-1 that in turn cleaves pro-IL-1 beta to its active form that 
further sustains the inflammatory process [32].  

In addition to sustaining inflammation, BTK is also involved 
in the senescence, that, as above reported, is essential for infec-
tion overspread and virus-related organ damage. Indeed, in a 
murine model, BTK suppression significantly correlated with a 
decreased accumulation of senescent cells in the brain and with 
a less anxious behavior of animals [33]. That these BTK-related 
aspects might be relevant in COVID-19 scenario is well prov-
en by two observations: 1) the clinical outcome of COVID-19 
patients occurred when NF-kB was blocked, for example with 
systemic ozone therapy [34], 2) an increased number of children 
who, after exposure to SARS-CoV-2, developed the Kawasaki’s 
syndrome (diarrhea, capillary leak syndrome, and myocardial 
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dysfunction), has been reported during the recent pandemic [35].  
The fundamental role of BTK in adaptive immunity and in-

fection control has been well understood since 1993, when the 
X-linked agammaglobulinemia (Bruton’s agammaglobulinemia) 
has been described for the first time [36]. In this genetic disease, 
different BTK mutations induce the lack of circulating B cells, 
the arrest of neutrophil maturation at myelocyte and promyelo-
cyte stages, the defect of dendritic cell maturation and antigen 
presentation, with the consequent increased of bacterial infection 
rate [37]. On the contrary, the viral infections in these subjects 
are rare, because T and NK cells functions are preserved due 
to the cellular lack of BTK [38].Nevertheless, in several murine 
models, BTK appeared to favor infections sustained by X-31 in-
fluenza virus39, EBV and HIV-1 [40].   

In addition to myeloid and dendritic cells, BTK is also ex-
pressed in mast cells, where it is involved in their TLR-mediat-
ed activation. It has been reported that BTK positively regulates 
production of cytokines by must cells, such as IL-2, IL-4, TNF 
alpha, and GM-CSF [41]. The relationship between SARS-
CoV-2 infection and the activation of mast cells with subsequent 
“cytokine storm” is undoubtedly supported by the high expres-
sion levels of ACE2 on mast cells, especially in lung, where, 
after virus triggering, they release pro-inflammatory cytokines 
and chemokines, including leukotrienes that cause bronchocon-
striction [42]. 

Then, a possible further reason for using BTKIs during 
Coronavirus pandemic is the ability to control mast cells acti-
vation. 

In conclusion, BTK is the actor of many scenes that charac-
terize Coronavirus infection and its related disease. Firstly, it ac-
tivates NF-kB and NFAT, sustaining the inflammation. Secondly, 
it is part itself of inflammasome, so sustaining the production 
of IL1 and other pro-inflammatory cytokines [43].  Thirdly, it 
is deeply involved in the senescence process, that contributes to 
damage many organs (especially lung) and to overspread new 
virions. 

Thus, its pharmacological inhibition might represent a pos-
sible effective therapeutic option against COVID-19. 

Btkis: Who are They? Pros and Cons of a Possible Their Use 
in COVID-19

BTKIs had been shown to be very effective in several he-
matological neoplasms, such as chronic lymphocytic leukemia 
(CLL) [44], Waldenstrom’s Macroglobulinemia (WM) [45], and 
mantle cell lymphoma (MCL) [46].  Ibrutinib, the first licensed 
compound, when compared with ofatumumab, offered a longer 
survival to 90% of CLL relapsed patients, including those carry-
ing deletions of chromosome 17 or/and TP53 mutations [47,48] 
In first line, ibrutinib induces 90% of overall responses, with 
83% and 73% of subjects who are respectively alive and dis-
ease-free after 5-years of treatment [49]. 

Acalabrutinib, a novel irreversible BTKI with higher po-
tency and selectivity than ibrutinib, seems to be also effective, 
with a lower probability of cardiac adverse events in respect of 
ibrutinib [50], 95% of overall responses and 24-months overall 
survival and progression-free survival of 91.5% and 87.2%, re-
spectively [51]. Finally, zanubrutinib, one of the newer drugs, in 
a small series of relapsed/refractory CLL cases, elicited 84.6% of 

responses, with a 12-months event-free survival of 92.9% [52].      
            From experience in the oncologic context, we can now 
derive solid information about the most frequent toxicities of 

BTKIs, which is a major point to be considered when we 
hypothesize their use in COVID-19. Firstly, we have to keep 
in consideration BTKIs-induced platelets dysfunction. In CLL, 
ibrutinib was associated with low-grade ecchymosis and pete-
chiae in 50% of cases, with major hemorrhages ranging from 
1% to 9% [53].  Indeed, ibrutinib inhibits the collagen-in-
duced platelet aggregation by interfering with the glycoprotein 
VI-mediated pathway [54]. This activity might be useful in 
ischemic conditions, such as after myocardial infarction, when 
ibrutinib and tirabrutinib, another novel BTKI, have been suc-
cessfully employed to inhibit platelet aggregation [55].  

During COVID-19, the number of platelets is often re-
duced, either because infection impairs their bone marrow 
production or because of their reduced half-life due to their 
peripheral destruction, with a pathogenetic mechanism similar 
to that observed in the macrophage activation syndrome [56]. 
Nevertheless, at least 25% of patients show elevated D-dimer 
levels, with a situation mimicking disseminated intravascular 
coagulation (DIC) [57]. It has been reported that BTKIs can 
block the platelet tyrosine kinase-linked receptor CLEC-2, 
implicated in a hypercoagulation state. Notably, CLEC-2 has 
only a minimal role in the classical hemostatic function of 
platelets; therefore, it is unlikely that its inhibition may cause 
bleeding [58].  Accordingly, it has been suggested that BTKIs 
in COVID-19 might reduce the microvascular and venous 
thrombosis without increasing the bleeding risk [59]. 

Another side effect which should not underestimate aris-
ing from the treatment of hematological neoplasms with BT-
KIs is represented by the infections. Pneumonia have been 
reported in 12% of patients, and average infection rate was es-
timated to be 7.1/100 patient-months during the first 6 months 
of treatment with ibrutinib and 2.6/100 during the following 
phases of treatment [60]. A pooled analysis of 4 randomized 
controlled studies where ibrutinib has been used in CLL or 
MCL patients found 8% of grade ≥3 pneumonia [61], while an-
other meta-analysis found that 1 of every 5 patients developed 
any grade of lung infection [62]. Noticeably, the infection rate 
observed in hematological patients treated with continuous 
ibrutinib is unlikely to overlap that of COVID-19 in which the 
treatment length should be very short, thus reducing the risk 
of infection. Moreover, it is well known that the population 
receiving BTKIs because of CLL or lymphoma is basically 
characterized by an impaired immune response.

Interestingly, some data from literature might support the 
idea that BTKIs might be also useful during the early phase 
of SARS-CoV-2 infection. In a murine model of pneumo-
coccal pneumonia, ibrutinib reduced the lung recruitment of 
monocytes and neutrophils and TNF alpha secretion by mac-
rophages [63]. Analogously, knockout BTK mice experienced 
longer survival compared with those with wild type gene after 
Listeria monocytogenes infection [64]. Similarly, BTK-defi-
cient mice showed a lower number of colon infiltrating mac-
rophages during intestinal colonization by Candida albicans, 
showing again its protective role even against fungal infection 
[65].  Finally, BTK inhibition caused the death of HIV1-infect-
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ed cells [66]. 
Furthermore, ibrutinib could induce autophagy through 

inhibition of Akt/mTOR pathway. Indeed, it has been recently 
reported that ibrutinib significantly reduced the Mycobacteri-
um Tuberculosis load in mediastinal lymph nodes and spleen 
of infected mice through inhibition of this pathway [67]. A 
phenomenon of tumor shrinkage has been previously reported 
in glioblastoma by a similar mechanism of autophagy induc-
tion  [68]. 

In addition, BTKIs allow a partial reconstitution of normal 
B cells and help to repair the T-cell defects in CLL patients. 
Indeed, multiple studies reported that ibrutinib decreases 
Th2 cytokines, normalizes total T-cell number, and decreases 
T-regulatory cells [69], so exerting an “immunomodulating” 
activity potentially useful action that could be useful also 
during COVID-19. Patients with severe COVID-19 share 
symptoms with those with “rheumatological” diseases, often 
showing cardiovascular, central nervous system, gastrointesti-
nal and kidney damage. Thus, clinical trials conducted in the 
“rheumatological” setting might support the use of BTKIs as 
“anti-inflammatory” drugs in SARS-CoV-2. Indeed, BTK is 
required for the activation of neutrophils recruited in the sites 
of inflammation [70], thus supporting the concept that BTKIs 
might be beneficial in settings with amplified inflammation, 
such as rheumatoid arthritis (RA) and lupus erythematosus 
systemic (SLE) [71].  Mouse models of these diseases clearly 
demonstrated that BTKIs were able to inhibit B cells trigging 
these autoimmune disorders: mice treated with the BTK inhib-
itor PCI-32765 displayed a significant decrease in spleen size 
compared to the vehicle-treated mice, associated with a signif-
icant reduced number of activated T and B cells and plasmab-
lasts [72]. Evobrutinib is a novel, highly selective, irreversible 
BTK inhibitor that in RA and SLE preclinical models resulted 
very effective, with reduction of disease severity and histolog-
ical damage consequent to the decrease of B cell activation and 
autoantibodies production [73].

Another interesting possible positive effect of BTKIs in 
COVID-19 is based on their ability of blocking the BTK-de-
pendent mast cell activation. Mast cells, physiologically in-
volved in the development of inflammation via release of 
multiple pro-inflammatory cytokines and chemokines, contain 
both ACE2 [74], and CD26 [75]. As above reported, these are 
the two receptors for SARS-CoV-2, and their presence on mast 
cells might explain at least in part some symptoms resembling 
the macrophage activation syndrome or graft-versus-host dis-
ease (GVHD) [43]. Some already published data support the 
use of BTKIs against mast cells: in a murine model, pretreat-
ment with two doses of acalabrutinib prevented IgE-mediated 
anaphylaxis [76], and remibrutinib, a novel, potent, highly se-
lective BTK inhibitor [77], seems to be promising in treatment 
of chronic spontaneous urticaria and Sjogren’s Syndrome [78].

Moreover, BTKIs seem to be effective in reducing inflam-
mation also by interfering with the TLR pathway. Murine mod-
els of SLE clearly demonstrated that TLR7 protected animals 
at the beginning of viral infection, sustaining subsequently, 
when virus is cleared, excessive inflammation [79]. The role 
of TLR7 has been recently discussed in relationship with the 
lower incidence of COVID-19 in women: 6% of males were 

at high risk of COVID-19 compared with 3% of females [80]. 
Women are naturally less susceptible to viral infections based 
on a different innate immunity since they have higher levels of 
CD4+ T cells, more antibodies which remain in the circulation 
longer and lower levels of IL-6. Interestingly, X chromosome 
encodes for TLR7 as well as many other proteins, including 
TLR8, CD40L and CXCR3, which influence the response to 
viral infections and vaccinations [81].  These findings might 
be relevant to explain the different rate of infection of new 
Coronavirus between males and females. 

A clear clinical demonstration of anti-inflammatory ac-
tion of BTKIs comes from the “hematological” experience. 
Baseline cytokine levels were similar in the two arms of Il-
luminate trial, comparing ibrutinib plus obinutuzumab versus 
chlorambucil plus obinutuzumab in CLL patients. As expect-
ed, all cytokine levels (IL6, IL8, IL18, MCP1, MIP1α, and 
TNFα) increased after infusion of obinutuzumab, but the me-
dian increase in cytokines was lower in the ibrutinib arm [82].
These data well correlated with the recent demonstration that 
ibrutinib itself exerts an additional “anti-inflammatory” effect, 
trough the reduction of the phagocytic ability and the increase 
of the immunosuppressive profile of fibroblast-shaped adher-
ent cells differentiated from peripheral blood-derived mono-
cytes or nurse-like cells (NLCs) in CLL patients [83].  

However, the most convincing evidence that BTKIs are 
able to exert a worthy anti-inflammatory activity comes from 
the finding that ibrutinib can successfully treat resistant chron-
ic GVHD (cGvHD) after failure of one or more lines of sys-
temic therapy [84]. For this reason, ibrutinib has been licensed 
also for this indication by U.S. Food and Drug Administration 
(FDA). Notably, in addition to inhibiting BTK, ibrutinib is an 
irreversible inhibitor of the Interleukin-2 inducible Tyrosine 
Kinase (ITK), involved in cytokine release and activation of 
Th2 lymphocytes, already demonstrated to be involved in 
cGVHD pathogenesis. On the other hand, ibrutinib fails to 
inhibit Th1 T cells which conversely are key actors in both 
pathogen and tumor response. Over all these data explain the 
beneficial effect of ibrutinib in controlling cGVHD without a 
significant increased number of infections [85]. Indeed, ibruti-
nib offered 67% of overall responses, with 21% of resolution of 
organ damage and a significant improvement of patients’ qual-
ity of life, in a series of 42 patients with cGVHD [86].Similar 
response rates were observed in skin (88%), mouth (88%), and 
gut (91%); furthermore, 80% of patients showed response in at 
least 2 organs. Among responders, 71% sustained response for 
at least 5 months and significantly reduced the median cortico-
steroid dose. Plasma levels of soluble factors associated with 
inflammation, fibrosis, and cGVHD significantly decreased 
during treatment with ibrutinib; in particular, reduced levels of 
interferon gamma, IL1, IL8, monocyte chemotactic protein 1, 
macrophage-derived chemokines, macrophage-inflammatory 
proteins 1, soluble CD25 and TNF alpha were detected [87]. 

In conclusion, BTK sustains viral infection and inflamma-
tion; the efficacy of BTKIs in “rheumatological” diseases and 
cGVHD support their potential use in COVID-19.

Btkis against SARS-Cov-2 and COVID-19: What We Al-
ready Learnt from the Experience of the Last Months

As above reported, many in vitro and in vivo studies clear-
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ly showed that BTKIs have an anti-inflammatory action and 
that probably are not detrimental during viral infections. How-
ever, the proof of concept arises from recently published clini-
cal observations and experiences in COVID-19. 

Indeed, Treon and colleagues reported that few patients 
with Waldenstrom’s macroglobulinemia presented symptoms 
of COVID-19. Specifically, only 5 subjects on therapy with 
ibrutinib 420 mg/day experienced mild Coronavirus-related 
cough, fever, headache, anorexia, and diarrhea, however none 
of them required hospitalization. Notably, a patient receiving 
ibrutinib 140 mg/day required mechanical ventilation after 
SARS-CoV-2 infection, showing scarce response to Tocilizum-
ab. However, he rapidly recovered with no further need of me-
chanical ventilation when ibrutinib dose was increased, demon-
strating that ibrutinib at therapeutic dose might be effective in 
COVID-19 [88]. 

Analogously, 8 CLL patients receiving BTKIs were hospi-
talized for COVID-19 at the Mount Sinai hospital. BTKI was 
held in 6 cases, and 2 of them developed severe respiratory fail-
ure and expired. On the contrary, two patients who continued 
ibrutinib had short hospital stays, minimal oxygen requirement, 
and rapid and full recover [89]. 
Finally, another study including 19 patients with severe 
COVID-19 hospitalized at NIH (Bethesda) reported that a 
short-term course of acalabrutinib (10-14 day) improved ox-
ygenation in the majority of patients and significantly reduced 
inflammation, as demonstrated by reduction of IL6 plasma lev-
els [90]. 

In conclusion, even if still on a small number of patients, 
these pivotal observations seem to encourage employing BT-
KIs in COVID-19.

Outlook
In the present article we revised the role of BTKIs in the 

light of COVID-19 pathogenesis (Figure 1). 
Overall, we think that the above mentioned in vitro and 

in vivo data might support the use of BTKIs against the new 
Coronavirus, based on 3 major likely beneficial effects.

Firstly, BTK is actively involved in inflammation via 
TLR and ITK inhibition and as constitutive part of the in-
flammasome. Consequently, its inhibition might be advanta-
geous in reducing the hyper-inflammation that characterizes 
COVID-19, as clearly proven by the successful use of BTKIs 
in rheumatological conditions and cGVHD.

Secondly, BTK inhibition might restore autophagy and re-
duce senescence, so avoiding the overspread of viral infection 
and sustaining the host antiviral response, as also demonstrat-
ed by the “not detrimental” antimicrobial activity of BTKIs in 
murine models. 

Thirdly, BTK inhibition might also reduce the “throm-
boinflammation” where the block of CLEC2 might reduce the 
thrombotic risk without a significant pro-hemorrhagic effect.

However, the results of the ongoing clinical trials are man-
datory. Indeed, 5 studies have been recently registered in the 
“clinical trial.gov” website. Ibrutinib will be administered for 
2-4 weeks to patients requiring supplemental oxygen for pul-
monary distress related to SARS-CoV-2 infection in two trials 
(NCT04375397 and NCT04439006). Analogously, acalabru-
tinib will compared with the best supportive care in other 2 
studies (NCT04380688, NCT04346199). Finally, zanubrutinib 
also will be compared with placebo or best supporting care in 
another ongoing study (NCT04382586). 

In conclusion, BTK seems to be a key player in the 
COVID-19 scenario, and we think that its inhibition may be 
crucial in the fight against the new Coronavirus.
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hyper-activation, reduced autophagy and host immune response and increased 
senescence that characterize COVID-19 (blue lines). The green dotted lines 
show the effects of potential BTK inhibition. The continuous green line de-
scribes how BTK inhibitors work in the contest of the immune response and 
coagulation that are dysregulated and hyper activated by BTK.
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